典型应用 / MODEL CASE

 标准孔板流量计内部流场的CFD数值模拟
首页 > 典型应用 >标准孔板流量计内部流场的CFD数值模拟

引 言

  孔板流量计因其结构简单、耐用而成为目前国际上标准化程度最高、应用最为广泛的一种流量计,但也存在着流出系数不稳定、线性差、重复性不高等缺点。采用CFD数值模拟来分析研究管内孔板类节流元件的相关流场在国外已有数十年的历史[1-5]。Sheikholeslami等人和Barry等人使用Fluent软件模拟了孔板流量计工作性能随着雷诺数、直径比、管道表面粗糙度、上游旋涡以及上下游流动边界条件的变化情况,在使用二维轴对称模型的情况下,他们认为采用80×60的网格足以得到与经验数据相差在2%以内的流出系数值[6-7]。美国Texas A&M大学的Morri-son等人采用CFD对孔板流量计进行了参数化研究,并测量了孔板下游的流场[8-9];后来又采用实验和CFD模拟对计量管内部的粗糙度规格进行评定改进,认为可以通过CFD模拟来获得任意雷诺数和管壁粗糙度下的管流通用速度分布图[10]。挪威科技大学(NTNU)的Erdal等人采用Phonics软件研究了充分发展流动条件下,单孔孔板下游的流场,并采用二维轴对称模型分析讨论了不同边界条件、差分算法和湍流模型等对孔板前后流场模拟结果的影响[11-12]。悉尼大学的Langrish等人利用CFX软件中的标准湍流模型,模拟了三维轴对称突扩管内雷诺数达到105时的湍流流动情况[13]。2003年,美国福特公司的研究人员采用Fluent 6.0软件模拟了汽车传动液压控制系统管路用孔板节流元件的流场,讨论了流出系数与直径比、孔板横截面形状、孔板轴向厚度、孔板出入口几何形状之间的关系[14]。

  近5年来,国内一些单位也开始围绕孔板类节流元件的流场问题进行数值模拟研究[15-17]。但迄今尚无人利用商业CFD软件专门针对孔板流量计的内部流场进行系统分析,与相关经验公式进行对比讨论,因此开展这方面的工作非常有必要。

  1 CFD模型及计算结果

  1.1 理论基础

  标准孔板流量计有D和D/2取压、角接取压和法兰取压等多种方式,其中D和D/2取压法的结构如图1所示。对于不可压缩流体的水平管流动,在忽略沿程摩擦阻力损失的情况下,根据流体流动的伯努利方程(能量守恒)和连续性原理,可以得出管道中流体理论体积流量QV的计算公式(1)

实际上,对于不可压缩流体,下游取压口并非设置在截面S2-S2处,而是在与S2-S2有一定距离的截面S3-S3处。考虑到在截面S1-S1、S3-S3上测取的平均流体压力差△p一定大于△p′,故定义流出系数C来修正上述公式,可得实际体积流量值的计算公式

  

  一般在出厂前通过建立的试验装置,实测标定出孔板流量计的流出系数C;在工程实际应用过程中,只需通过测定实际的△p值,将C、△p值代入式(2),即可得到所关心的实际体积流量值qV。对于不可压缩流体,当采用标准孔板结构时,也可不实测标定,而使用国际标准化组织(ISO)的里德-哈利斯/加拉赫公式确定流出系数,该公式是基于大量实测实验而回归出的一个经验公式[18]。

  在已知qV的前提下,可以通过CFD数值模拟得出孔板前后D和D/2截面上的压力差△p,然后将qV、△p代入式(2),求出数值模拟流出系数C′。

1.2 建模与求解

  运用Gambit直接建立标准孔板流量计D和D/2取压时的三维实体模型,但利用对称的特点沿轴向考虑1/2的实体。上游管段和下游管段直径D取100mm,孔板上游管段长取20D,下游管段长取10D,孔板厚度取3mm[19]。在固-液交界壁面处(图2(a)中的线段AB、HG、IJ、OP处)进行边界层处理,边界层的第一行百分比选用15%,共5层,比例设为1.1。

  为了准确捕捉孔板前后流场的变化情况,以上、下游直管段内与孔板等孔径的圆柱面为分界面实施Split操作(图2(a)中所示为线段DC、FE、KL、MN),并将边界层作为一种网格加密的技巧在此予以应用:分界圆柱端面向外、向内边界层的第一行百分比选用15%,共10层,比例设为1.1;分别将圆环面和半圆面以Map、Pave的方式进行网格划分。上游直管段的轴向网格密度沿BA、CD、EF、GH方向以1.1的比例由密变疏,下游直管段的轴向网格密度沿IJ、KL、MN、OP方向以1.1的比例由密变疏,孔板轴线方向(CK、EM)上的网格平均分布。最后采用Cooper进行网格划分,最终所得网格划分情况如图2(b)所示。


在初始验证性算例中,取β=0.4、qv=0.5m3/h;以常温下的水作为流体介质,其密度、粘度根据Flu-ent 6.2.16数据库中对应的物性参数来选取。进、出口的边界条件分别设置为速度入口、出流(outflow),取流体重力加速度沿着-Y轴方向。此时对缨的入口流速v=0.0176839m/s,则上游直管段内和节流孔处的雷诺数Re分别为1760、4400,可见流体在上游直管段内为层流流动,在节流孔内为湍流流动。为此,Fluent数值模拟时采用3ddp求解器,选择标准k-ε两方程湍流模型和强化壁面处理,离散方程组的压力速度耦合选择SIMPLE算法,动量、湍流动能、湍流耗散率均采用一阶迎风差分格式。图3(a)为内部的速度大小分布等值线图,水流经由孔板节流后,形成了一个对称的速度尖峰,中心轴线上的速度最大,逐渐向两边递减;在孔板的下游形成一个尖核状的速度峰,而在下游靠近壁面处形成一个回旋区。图3(b)为湍流动能的分布图,湍流动能在孔板下游区域较强,并在孔板内壁所在面附近形成双峰。

  通过在Fluent中读取孔板前后D和D/2轴截面上的平均压力值ph、pl,得出Δp=14·05Pa,进而计算出数值模拟流出系数C′=0·6508;根据ISO经验公式计算出的推荐流出系数C=0.6323,两者的相对误差δ为2.93%,可见C′与C吻合较好。虽然CFD数值模拟与实验实测一样都存在着各种误差影响,但仍足以证明CFD数值模拟模型的正确性。


2 各参数变化对流出系数影响的讨论

  为了研究不同流量、直径比、孔板厚度和流体介质对标准孔板流量计流动情况的影响,得出一些具有指导意义的结论,在工况温度均为300K的情况下,每次仅改变其中某个参数,利用Fluent进行数值模拟和相关分析讨论。如不特别指出,所建三维模型边界层的第一行百分比都选用15%。

  2.1 流量的影响

  以水为流体介质,对β=0.5、E=3mm的标准孔板流量计,根据具体的流动情况在Fluent求解器中选用层流或k-ε湍流模型,但网格划分模式不变(即都采用边界层网格加密处理)。得出不同流量下的流场计算结果如表1所示。

  由表中可以看出,在包含层流、过渡流和湍流状态的不同流量下,数值模拟流出系数C′与ISO公式流出系数计算值C均吻合得较好,并且在层流状态下(Re<2100),C′与C的误差维持在2%以内。随着流量的不断增大,C逐渐减小,而C′随着流动状态的不同其变化规律也不同。在层流状态下,随着流量的增大C′逐渐减小;在过渡流状态下(2100 4000),随着流量的增大C′逐渐增大;在湍流状态下(Re>4000),随着流量的增大C′逐渐减小。并且,在湍流状态下,C′始终大于C。



,
电话:0086-029-88767898 88767880  传真(FAX):0086-029-88898003  Email:xaslck@163.com
地址:西安市高新区锦业路38号粤汉国际1幢10606室 陕ICP备12005116号  版权所有:西安三联测控技术有限公司|德尔塔巴|威力巴|插入式多点风量测量
收缩
  • QQ咨询

  • 在线咨询
  • 点击这里给我发消息
  • 点击这里给我发消息
  • 点击这里给我发消息
  • 点击这里给我发消息